

aasted

JESPER JERLANG

Sustainability manager in Aasted

Aasted manufactures equipment for the chocolate industry

Member of: S-611 Miljø og cirkulær økonomi S-1000/U05 Cirkulær økonomi

Convenor of: IEC/TC 111/WG 20 Design for circularity

Paving the way to a low-carbon circular economy

Raw materials Parts manufacturing A key element in a circular economy is to We select suppliers based on minimize the usage of virgin raw materials. sustainability ratings and work with Product design focusing on more suppliers to support their progress ligthweight constructions reduces the on material efficiency and reduced material consumption. A key circularity environmental impact. An important next initiative will be to source materials with step is to improve the traceability and smaller environmental footprint and documentation of used resources higher degree of recycled content 00000 Each of the life cycle phases are affected by End of life 0 **Assembly at Aasted** the design 0 0 Most of our machines can be easily dismantled We already work with waste allowing materials to be recycled. A sizable management to retain the value Transitioning proportion of our machines are made of pure of all recyclable waste materials. from linear to metals, which are both easy and economically Further efforts will be made to More than 80% of a circular economy profitable to recycle. By providing recycling reduce the waste and improve the instructions, we may increase actual sorting for recycling products' recycling, and product design must focus on removing barriers to recycling such as surface environmental impact treatment, adhesives and additives is determined in the design phase Use of sold products പ്പു **Extended service life** The high quality of our machines and We offer extended services to support a equipment generally helps customers limit their production waste, as our machines allow that longer lifetime such as repair and spare parts, upgrades and remanufacture. their products are produced uniformly and We are currently exploring how new with high weight accuracy. The high quality also product-service business models can provides for a long lifetime and high degree of improve sustainability and useful lifetime utilization. Product development with focus on

flexible use may further increase utilization

Standardization on design for circularity

IEC/TC 111 Environmental standardization for electrical and electronic products and systems WG 20 Design for circularity considerations

CEN/CENELEC JTC10 Material efficiency aspects for Ecodesign WG 8 Design for circularity

This TS will build on IEC 62430 Environmentally conscious design

Out for CD enquiry until 14 July. Expects formal vote end of 2023 and publication early 2024

The document describes principles and provides guidance on how to embed material circularity aspects into the design and development of products

Content:

- Terms and definitions
- Principles of material circularity
- Guidance for integrating material circularity aspects during design and development
- Trade-offs between different ecodesign measures

TS 63428 – Material circularity principles

3 guiding principles:

Narrowing resource flows: aimed at using fewer materials or other resources per product

Slowing resource flows: through the design of long-life goods and product-life extension

Closing resource loops: through the use of recycled, reused, and renewable content,

Durable products using fewer (virgin) materials	Consume less input resources to make a product						
	Reliable products that last longer						
Longer life through	Product reuse, repair, upgrade						
life-extension	Product and parts refurbishment, recondition						
Closing material	Product and parts remanufacture, repurpose						
loops at end-of-life	Parts recovery and material recycling						
Material is last	Energy recovery						
Material is lost	Waste treatment, landfill						

Figure 2 – The material efficiency hierarchy

TS 63428 – Guidance for the products' life phases

Value proposition creation – how to include circularity in value propositions

Material selection – how to support narrowing, slowing or closing the loops

Manufacture – how to avoid waste

Distribution and installation – how to avoid early ageing

Use (maintenance, repair, upgrade, reuse and refurbishing) – how to support durability

End-of-Life (remanufacture, repurpose, recovery and disposal) – how to support closing the loops

EN 45560: Method to achieve circular designs of products

The document will be out for enquiry from July. Expected to come to voting Q2 2024 and publication end 2024

Scope:

This document proposes **a method to define circular products design rules**. It details principles, requirements and guidance associated with the proposed method. This document:

- specifies requirements and guidance for integrating circularity into the design and development process of products by an organization.
- supports organizations to develop product design rules to fulfil their chosen circular categories (e.g., the circular business models chosen by the organization or the legislation requirements).

EN 45560 - Principles

			6
LINEAR FLOW	NARROWING FLOWS	SLOWING FLOWS	CLOSING FLOWS
We take materials, make products and dispose them when they become <u>obsolete</u>	This principle is aimed at using less resources to make and use a product	This principle is aimed at long product lifes, slowing down the flow of materials from initial production up to post-use	This principle is aimed at closing the loop between post-use and production, resulting in a circular flow of materials

Durable products using	Consume less input resources to make a product	Use less
fewer (primary) materials	Reliable products that last longer	e.g. EN 45552, EN 45558
Longer life through	Product reuse, repair, upgrade	Facilitate reuse
life-extension	Product and parts refurbishment, recondition	e.g. EN 45554, EN 45553
Closing material loops at end-of-life	Product and parts remanufacture, repurpose	Recover and use again
	Parts recovery and material recycling	e.g. EN 45555, EN 45556, EN 45557
Material is lost	Energy recovery	
	Waste treatment, landfill	

The circular product design process for implementation

Circular goals as part of the ESG strategy by an organization Cascade the circular goals in the organization by defining circular categories For each circular category, determine the applicable circular product attributes

Translate the circular-ready attributes into concrete circular product design requirements for the product in question

PROCESS STEPS

EXAMPLES

By 2030 50% of revenues coming from refurbished products and all plastic parts from ≥50% recycled

Refurbishment, commercial returns and recycled content

For refurbishment select:

- Ability to clean, sterilize and restore aesthetic
- Ability to secure and private data exchange
- Ability to disassemble, repair and re-assemble
- Modular design

For refurbishment the dismantling process shall happen in a safe and quick way, avoiding e.g., infectious liquid or leaking battery. The risk of a leaking water tank with infectious water shall be managed by designing an antidrip function

Circular categories as the entry

Circular categories can be either:

- A circular design strategy
- A circular business model
- An area of action

Assessing product circularity through circular product attributes

User safety or security	Functional Performance	Obsolescence / Lifetime	Material Stewardship
identifying, <u>analyzing</u> and preventing errors that lead to adverse events	refers to the capacity of the material to fulfil its requirements in the specific device application	refers to the time and state in which a piece of technology or product ceases to be useful, productive, or compatible	embodies the range of activities required for optimal and appropriate use of minerals, metals and other (natural) resources in society
 Ability to clean, sterilize and restore aesthetic <u>state</u> Ability to guarantee digital <u>security</u> Ability to operate safely when given longer <u>lifetimes</u> 	 Ability to assess and track <u>performance</u> Ability to disassemble and <u>reassemble</u> Ability of users to accept used <u>products</u> 	 Forward and backward compatibility and use of standardized parts Modular design Product durability and reliability (including parts, components, and materials) Potential for adaptability and flexibility Potential for product attachment and emotional durability by users 	 Use of non-toxic and sustainable materials Potential for materials to be separated and <u>recycled</u> Potential for material minimization Potential for digitalization

Supporting questions to determine circular product requirements

Circular product attributes	Design questions	Description, guidance, examples	Circular product design requirements			
1. Ability to clean, sterilize and restore aesthetic state	1.1. Will the end user be confident that the product has a high quality of hygiene?	A product expressing a high quality of hygiene is essential to a sharing <u>model</u> It is also important to ensure the end-user of the product's cleanliness. E.g., the packaging states 'This product has been controlled to have the same hygiene standard of a new product"	Product-specific or product-group requirements shall be <u>applied</u>			
	1.2. Will the product withstand many cycles of cleaning and sterilization?	Product looks and functions expressing a high quality is essential to achieve end user acceptance. 'Age with grace' is necessary	Product-specific or product-group requirements shall be applied			
	1.3. Will the dismantler be protected from contagious or hazardous content?	It is important that the dismantling process happens in a safe and quick way, avoiding e.g., infectious liquid or leaking battery. E.g., A leaking water tank with infectious water could be designed with an anti-drip function	Product-specific or product-group requirements shall be applied			
	1.4. Will the dismantler be able to disinfect the product with standard tools and methods	Using standard tools reduces throughput time for service. E.g., disinfection liquid + cloth, autoclave	Product-specific or product-group requirements shall be applied			
	1.5. Is the product designed so it maximizes cleaning efficiency?	Smooth surfaces with no/few gaps or ridges accumulate less dirt. E.g., design all buttons as foil buttons	Product-specific or product-group requirements shall be applied			
	1.6. Is a long life ensured by 'age with <u>grace' materials</u> ? Also, after some physical damage?	It is necessary to include in the design aesthetics that product looks good after use, also considering potential damages. E.g., scratches on a leather backpack	Product-specific or product-group requirements shall be applied			

A circular product design matrix

	CIRCULAR CATEGORIES													
	Use less Facilitate reuse					Use again								
CIRCULAR PRODUCT ATTRIBUTES	Physical to Virtual	Multiple	Lease & Share	Use less materials	Longer Life	SW update	HW mainte- nance	HW or SW Upgrade	Repair	Refurbish	Reuse	Remanu facture	Parts	Recycling & recycled content
1. Ability to clean, sterilize and restore aesthetic state														
2. Ability to guarantee digital security														
 Ability to operate safely when given longer lifetimes 														
4. Ability to assess and track performance														
5. Ability to disassemble and reassemble														
6. Ability of users to accept used products														
 Forward and backward compatibility and use standardized parts 														
8. Modular design														
9. Parts durability and reliability														
10. Potential for adaptability and flexibility														
11. Potential for product attachment and emotional durability by users														
12. Use of sustainable materials														
 Ability for materials to be separated and recycled 														
14. Potential for material minimization														
15. Potential for digitalization														

High relevance